0


As trigonometry have different angles, for those different angles trigonometric ratios also have different values. In the trigonometry the angles 0°, 30°, 45°, 60°, 90°, 120°, 135°, 150°, 180°, 210°, 225°, 240°, 270°, 300°, 315°, 330°, 360° are taken as standard angles.

We can find the trigonometric ratios of 0° and 90°. The following table shows the values of trigonometric ratios of the angles 0°, 30°, 45°, 60° and 90°.

Angles30°45°60°90°
sinθ01
cosθ10
tanθ01
cosecθ21
secθ12
cotθ10


PROCEDURES TO FIND THE TRIGONOMETRIC RATIOS

The standard angles i.e 0°, 30°, 45°, 60°, 90° is can be find out by simple way as given below: -
Process 1: -Put the number from 0 to 4 as  from 0 degree to 90 degree follows: -
30°45°60°90°
01234

Process 2: -
Now divide each number by 4
30°45°60°90°

Process 3: -Take square root of all the numbers
30°45°60°90°


Process 4: -The values which are obtained at first are the values of sine of the standard angles.
Angles30°45°60°90°
sin01

Process 5: -Then reversing the order, the value of cos of the standard angles are obtained.
Angles30°45°60°90°
cos10

Process: -After dividing the value of sin by the value of cos, the values of tangent can be obtained: -
Angle30°45°60°90°
tan01∞  undefined

NOTE: - The reciprocal of sin, cos and tan are the values of cosec, sec and cot respectively.

Post a Comment

 
Top